Neural network construction and training using grammatical evolution

نویسندگان

  • Ioannis G. Tsoulos
  • Dimitris Gavrilis
  • Euripidis Glavas
چکیده

The term neural network evolution usually refers to network topology evolution leaving the network’s parameters to be trained using conventional algorithms. In this paper we present a new method for neural network evolution that evolves the network topology along with the network parameters. The proposed method uses grammatical evolution to encode both the network and the parameters space. This allows for a better description of the network using a formal grammar allowing the network architect to shape the resulting search space in order to meet each problem requirement. The proposed method is compared with other three methods for neural network training and is evaluated using 9 known classification problems and 9 known regression problems. In all 18 datasets, the proposed method outperforms its competitors. r 2008 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Simulation of Pore Water Pressure in the Body of Earthen Dams during Construction Using Combining Meta-Heuristic Algorithms and ANFIS

Accurate prediction of pore water pressure in the body of earth dams during construction with accurate methods is one of the most important components in managing the stability of earth dams. The main objective of this research is to develop hybrid models based on fuzzy neural inference systems and meta-heuristic optimization algorithms. In this regard, the fuzzy neural inference system and opt...

متن کامل

Adapting modularity during learning in cooperative co-evolutionary recurrent neural networks

Adaptation during evolution has been an important focus of research in training neural networks. Cooperative coevolution has played a significant role in improving standard evolution of neural networks by organizing the training problem into modules and independently solving them. The number of modules required to represent a neural network is critical to the success of evolution. This paper pr...

متن کامل

Image Backlight Compensation Using Recurrent Functional Neural Fuzzy Networks Based on Modified Differential Evolution

In this study, an image backlight compensation method using adaptive luminance modification is proposed for efficiently obtaining clear images.The proposed method combines the fuzzy C-means clustering method, a recurrent functional neural fuzzy network (RFNFN), and a modified differential evolution.The proposed RFNFN is based on the two backlight factors that can accurately detect the compensat...

متن کامل

Evaluation of Ultimate Torsional Strength of Reinforcement Concrete Beams Using Finite Element Analysis and Artificial Neural Network

Due to lack of theory of elasticity, estimation of ultimate torsional strength of reinforcement concrete beams is a difficult task. Therefore, the finite element methods could be applied for determination of strength of concrete beams. Furthermore, for complicated, highly nonlinear and ambiguous status, artificial neural networks are appropriate tools for prediction of behavior of such states. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2008